GPU MrBayes V3.1: MrBayes on Graphics Processing Units for Protein Sequence Data.

نویسندگان

  • Shuai Pang
  • Rebecca J Stones
  • Ming-Ming Ren
  • Xiao-Guang Liu
  • Gang Wang
  • Hong-ju Xia
  • Hao-Yang Wu
  • Yang Liu
  • Qiang Xie
چکیده

We present a modified GPU (graphics processing unit) version of MrBayes, called ta(MC)(3) (GPU MrBayes V3.1), for Bayesian phylogenetic inference on protein data sets. Our main contributions are 1) utilizing 64-bit variables, thereby enabling ta(MC)(3) to process larger data sets than MrBayes; and 2) to use Kahan summation to improve accuracy, convergence rates, and consequently runtime. Versus the current fastest software, we achieve a speedup of up to around 2.5 (and up to around 90 vs. serial MrBayes), and more on multi-GPU hardware. GPU MrBayes V3.1 is available from http://sourceforge.net/projects/mrbayes-gpu/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MrBayes on a Graphics Processing Unit

MOTIVATION Bayesian phylogenetic inference can be used to propose a 'tree of life' for a collection of species whose DNA sequences are known. While there are many packages available that implement Bayesian phylogenetic inference, such as the popular MrBayes, running these programs poses significant computational challenges. Parallelized versions of the Metropolis coupled Markov chain Monte Carl...

متن کامل

MrBayes tgMC3: A Tight GPU Implementation of MrBayes

MrBayes is model-based phylogenetic inference tool using Bayesian statistics. However, model-based assessment of phylogenetic trees adds to the computational burden of tree-searching, and so poses significant computational challenges. Graphics Processing Units (GPUs) have been proposed as high performance, low cost acceleration platforms and several parallelized versions of the Metropolis Coupl...

متن کامل

Efficient Implementation of MrBayes on Multi-GPU

MrBayes, using Metropolis-coupled Markov chain Monte Carlo (MCMCMC or (MC)(3)), is a popular program for Bayesian inference. As a leading method of using DNA data to infer phylogeny, the (MC)(3) Bayesian algorithm and its improved and parallel versions are now not fast enough for biologists to analyze massive real-world DNA data. Recently, graphics processor unit (GPU) has shown its power as a ...

متن کامل

Accelerating Phylogenetic Inference on GPUs: an OpenACC and CUDA comparison

Phylogenetic inference is used to derive a “tree of life” for a collection of species whose DNA sequences are known. While several software packages have already been developed to take advantage of GPUs to accelerate phylogenetic inference, they typically require significant changes to the original code, constraining code maintenance. Recently, the OpenACC API was proposed to minimize the progr...

متن کامل

Applying the Stream-Based Computing Model to Design Hardware Accelerators: A Case Study

To facilitate the design of hardware accelerators we propose in this paper the adoption of the stream-based computing model and the usage of Graphics Processing Units (GPUs) as prototyping platforms. This model exposes the maximum data parallelism available in the applications and decouples computation from memory accesses. The design and implementation procedures, including the programming of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 32 9  شماره 

صفحات  -

تاریخ انتشار 2015